Structure of a Copper(II) Chloride-Nicotine Complex: Hexa- μ-chloro- $\mu_{4}-$ oxotetrakis((nicotine)copper(II)]*

By Helmut M. Haendler
Department of Chemistry, University of New Hampshire, Durham, New Hampshire 03824-3598, USA

(Received 23 January 1990; accepted 2 February 1990)

Abstract

Cu}_{4} \mathrm{Cl}_{6} \mathrm{O}\left(\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2}\right)_{4}\right], M_{r}=1131 \cdot 8\), monoclinic, $\quad P 2_{1}, \quad a=13 \cdot 117(3), \quad b=13.050(3), \quad c=$ 14.067 (3) $\AA, \beta=92.50(2)^{\circ}, V=2405.6$ (9) $\AA, Z=2$, $D_{x}=1.562, \quad D_{m}=1.55(1) \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{MoK} K)=$ $0.71073 \AA, \quad \mu=2.18 \mathrm{~mm}^{-1}, \quad F(000)=1156, \quad T=$ 293 (1) K, $R=0.048$ for 2910 reflections. Each of the two asymmetric units consists of a central cluster containing an O atom, four Cu atoms, and six Cl atoms, with four nicotine molecules attached to the Cu atoms via the N atoms of the six-membered heterocyclic rings. The Cu atoms are tetrahedrally oriented about the O atom and are bridged by the six Cl atoms, which are approximately octahedral with respect to the cluster center. The Cu and coordinated N atoms lie along directions which correspond to four of the eight threefold axial directions of a regular octahedron. Each Cu atom lies at the center of a trigonal bipyramid, with the O atom and the nicotine N atom in the axial positions and three Cl atoms in the equatorial positions. Average distances are: $\mathrm{Cu}-\mathrm{N}, 1.977(10) ; \mathrm{Cu}-\mathrm{O}, 1.908$ (8); $\mathrm{Cu}-\mathrm{Cl}$, $2 \cdot 396$ (4); $\mathrm{Cu}-\mathrm{Cu}, 3 \cdot 115$ (2) \AA. The configuration of the nicotine ligands is that of the trans diastereomer.

Introduction. Numerous adducts of alkaloids with metal salts have been reported, especially in the older literature. For example, nicotine [3-(1-methyl-2pyrrolidinyl)pyridine] was reported to form molecular complexes with copper(II) chloride (Babak \& Kagramanova, 1954; Prasad \& Sharma, 1958). Published results were not always in agreement, but a simple stoichiometry, CuCl_{2}.nicotine, could be assumed. The elucidation of the structure of a representative sample became a matter of interest.

Experimental. The complex was formed by addition of an aqueous solution of nicotine to an acetone solution of copper(II) chloride dihydrate. The red-orange precipitate was recrystallized by slow evaporation of a chloroform solution. Density was measured by flotation in dichloromethane/carbon tetrachloride. Analysis: calculated for $\mathrm{C}_{40} \mathrm{H}_{56}{ }^{-}$

[^0]0108-2701/90/112054-04\$03.00
$\mathrm{Cl}_{6} \mathrm{Cu}_{4} \mathrm{~N}_{8} \mathrm{O}: \mathrm{C} 42.45 ; \mathrm{Cl} 18.5 ; \mathrm{H} 4.99 ; \mathrm{N} 9.90 \%$; found: $\mathrm{C} 42 \cdot 19$; $\mathrm{Cl} 19 \cdot 5$; H 4.97 ; $\mathrm{N} 9.78 \%$.

The reflection intensities of a dark brown crystal (size not recorded) were measured at the Department of Chemistry, University of Texas, Austin, on an Enraf-Nonius CAD-4 diffractometer. Data reduction to the final intensity file was carried out at Enraf-Nonius, Bohemia, NY. Cell dimensions from setting angles of 25 reflections. 4616 reflections measured in $P 1,42.9 \mathrm{~h}$ exposure time, two intensity standards measured every hour, 0.6% decay, no linear decay correction. Converted to monoclinic cell, no evidence of further cell reduction. ψ scan for empirical absorption correction, transmission factors $0.65-1 \cdot 00$. Maximum $\sin \theta / \lambda=0.594 \AA^{-1}$. Systematically absent reflections were rejected and the data set averaged for symmetry related reflections; 4420 remaining reflections, 1260 unobserved with $I>$ $3 \sigma(I) ; h-15$ to $15, k 0$ to $15, l 0$ to 16 .

Intensity statistics strongly indicated $P 2_{1} / m$ as the probable space group, and the composition of the complex was assumed to be $\mathrm{CuCl}_{2} \cdot \mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2}, Z=8$, in accord with earlier reports. Attempts to solve the complicated Patterson map were unsuccessful, and trials with direct methods suggested that high symmetry of the copper chloride moiety was strongly affecting solution techniques. In the meantime, the program $N R C V A X$ (Gabe, Lee $\&$ LePage, 1985) had been implemented and was used to generate an E map in $P 2_{1}$ on which four symmetry unrelated Cu atoms were identified. 55 additional non-H atoms were located by successive passes of the DIRDIF system (Beurskens et al., 1985). Only six of the eight postulated Cl atoms of the asymmetric unit could be identified as such on the Fourier map. Peak heights associated with the remaining two atoms indicated that these were O atoms, located approximately at the centers of the two tetrahedra of Cu atoms. The original assumed composition was incorrect; the complex is $\mathrm{Cu}_{4} \mathrm{Cl}_{6} \mathrm{O}\left(\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2}\right)_{4}, Z=2$, and the refinement was continued on this basis.

Least-squares refinement on F, block-diagonal approximation, isotropic and anisotropic thermal parameters. The positions of the 20 H atoms of the (c) 1990 International Union of Crystallography
pyridine rings were calculated; the remainder, except for those of the methyl groups, were located on a difference Fourier map or by superposition of a model on a scaled projection. H atoms of the CH_{3} groups could not be identified. Final block-diagonal refinement, with H atoms fixed, using 2910 reflections (242 low-intensity reflections with $\Delta F / F>0.3$ and eight reflections of low θ with $\left|F_{o}\right| \ll\left|F_{c}\right|$ omitted), anomalous dispersion for Cu , and $B=$ $5.0 \AA^{2}$ for H atoms, converged at $R=0.048, w=$ $1 / \sigma^{2}\left(F_{o}\right), \quad w R=0.038 . \quad(\Delta / \sigma)_{\mathrm{av}}=0.11, \quad(\Delta / \sigma)_{\max }=$ $0.54, S=1.65$ with 531 variables. Final difference map, with $\Delta F(000)=12$, showed max. and min. peaks of 0.77 and $-0.81 \mathrm{e} \AA^{-3}$. No systematic errors as functions of $\sin \theta$ or F_{o}. Atomic scattering factors from International Tables for X-ray Crystallography (1974). National Research Council of Canada programs (Ahmed, 1973) used for most refinement calculations; ORTEPII (Johnson, 1976) for the thermal-ellipsoid plots.

Discussion. Final positional parameters of non-H atoms are given in Table 1,* and principal bond distances and angles in Table 2. The asymmetric molecule is shown in projection in Fig. 1; the thermal-ellipsoid plots of the central cluster and one of the nicotine ligands in Fig. 2. H atoms are omitted for clarity.
The molecule has an O atom at the center of a tetrahedron of Cu atoms, which is itself centered in a slightly distorted octahedron of Cl atoms. This octahedron is in turn surrounded tetrahedrally by the four pyridine N atoms of the nicotine ligands, in parallel orientation with the Cu tetrahedron. The Cu atoms are bridged by the six Cl atoms. The net effect is to place each Cu atom at the center of a quasitrigonal bipyramid (t.b.p.); the four bipyramids have six edges in common. The central O atom and the pyridine N atoms are in the axial positions, the bridging Cl atoms in equatorial positions. This type of cluster structure was first reported by Bertrand \& Kelley (1966) and Bertrand (1967) in $\mathrm{Cu}_{4} \mathrm{Cl}_{6} \mathrm{O}$ (TPPO) 4 ; by Kilbourn \& Dunitz (1967) in $\mathrm{Cu}_{4} \mathrm{Cl}_{6} \mathrm{O}(\mathrm{py})_{4}$; by Bertrand \& Kelley (1969) in $\left[\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}_{4} \mathrm{Cu}_{4} \mathrm{OCl}_{10}\right]$; and by Gill \& Sterns (1970) in $\mathrm{Cu}_{4} \mathrm{Cl}_{6} \mathrm{O}$ (2-mepy) ${ }_{4}$. Additional structures have been reported since and the references to these are given in the comprehensive paper of Norman, Rose \& Stenkamp (1989), which also reports the structure of

[^1]Table 1. Fractional atomic coordinates and equivalent isotropic temperature factors

$B_{\text {eq }}=\left(8 \pi^{2} / 3\right) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	$y \dagger$	2	$B_{\text {eq }}\left(\AA^{2}\right)$
$\mathrm{Cu}(1)$	0.66536 (10)	$0 \cdot 30602$ (12)	$0 \cdot 19019$ (9)	2.97
$\mathrm{Cu}(2)$	0.81601 (13)	0.48854 (13)	$0 \cdot 17154$ (9)	2.85
$\mathrm{Cu}(3)$	0.65962 (10)	0.48830 (13)	$0 \cdot 33245$ (9)	2.86
$\mathrm{Cu}(4)$	0.84194 (10)	0.33560 (11)	0.34199 (9)	2.97
$\mathrm{Cl}(1)$	0.5236 (2)	0.3868 (3)	0.2654 (2)	$4 \cdot 51$
$\mathrm{Cl}(2)$	0.7422 (3)	0.3801 (3)	0.0540 (2)	4.79
$\mathrm{Cl}(3)$	0.7642 (2)	0.4358 (2)	0.4651 (2)	3.64
$\mathrm{Cl}(4)$	0.9668 (2)	0.4255 (3)	0.2512 (2)	5.08
$\mathrm{Cl}(5)$	0.7582 (3)	0.1870 (2)	0.2872 (2)	5.48
$\mathrm{Cl}(6)$	0.7202 (2)	0.6293 (2)	0.2317 (2)	4.09
O(1)	0.7466 (5)	$0 \cdot 4088$ (5)	0.2599 (4)	$2 \cdot 22$
N(1)	0.5893 (7)	0.2080 (7)	0.1123 (6)	3.57
N(2)	0.8923 (7)	0.5815 (7)	0.0849 (6)	3.98
N(3)	0.5696 (7)	0.5848 (7)	0.4025 (6)	3.41
N(4)	0.9420 (7)	0.2730 (7)	0.4302 (6)	$3 \cdot 34$
$N(5)$	0.7522 (8)	-0.0445 (9)	0.0158 (8)	6.77
N(6)	0.8336 (10)	0.5918 (10)	-0.2084 (6)	7.56
N(7)	0.3197 (8)	0.7454 (8)	0.2690 (7)	$5 \cdot 19$
N(8)	1.2114 (8)	0.4118 (8)	0.5628 (7)	$5 \cdot 28$
$\mathrm{C}(10)$	0.6426 (9)	0.1329 (9)	0.0716 (8)	3.82
C(11)	0.5973 (8)	0.6420 (9)	0.0062 (8)	3.52
C(12)	0.4956 (11)	0.0698 (12)	-0.0160 (10)	$6 \cdot 16$
C(13)	0.4419 (11)	$0 \cdot 1489$ (12)	0.0243 (11)	7.86
C(14)	0.4869 (10)	0.2157 (11)	0.0868 (10)	6.06
C(15)	0.6598 (9)	-0.0197 (12)	-0.0374 (8)	$5 \cdot 19$
C(16)	0.7011 (12)	0.0161 (14)	-0.1358 (11)	8.67
C(17)	0.8003 (14)	-0.0128 (21)	-0.1342 (16)	16.36
C(18)	0.8337 (12)	-0.0721 (14)	-0.0506 (12)	9.81
C(19)	0.7378 (17)	-0.1166 (14)	0.0910 (12)	11.84
C(20)	0.8875 (9)	0.5720 (9)	-0.0086 (7)	$3 \cdot 43$
C(21)	0.9421 (9)	0.6328 (10)	-0.0690 (9)	$4 \cdot 72$
C(22)	1.0075 (10)	0.7061 (9)	-0.0305 (9)	$4 \cdot 51$
C(23)	1.0113 (10)	0.7139 (9)	0.0688 (9)	$5 \cdot 14$
C(24)	0.9554 (10)	0.6527 (9)	$0 \cdot 1268$ (9)	4.58
C(25)	0.9341 (13)	0.6224 (12)	-0.1744 (9)	7.66
C(26)	0.9999 (14)	0.5367 (16)	-0.2093 (11)	11.55
C(27)	0.9490 (14)	0.4925 (16)	-0.2947 (11)	10.90
C(28)	0.8479 (13)	$0 \cdot 5522$ (13)	-0.3002 (9)	8.25
C(29)	0.7532 (17)	0.6699 (14)	-0.2040 (12)	11.85
C(30)	0.5091 (8)	0.6520 (9)	0.3520 (8)	3.57
C(31)	0.4518 (9)	0.7236 (9)	0.3960 (8)	$4 \cdot 10$
C(32)	0.4502 (9)	0.7276 (10)	0.4938 (8)	4.42
C(33)	0.5094 (9)	0.6582 (10)	0.5460 (8)	4.53
C(34)	0.5671 (9)	0.5886 (10)	0.4993 (7)	3.99
C(35)	0.3928 (10)	0.7995 (11)	0.3308 (8)	$5 \cdot 87$
C(36)	0.4605 (12)	0.8626 (12)	0.2625 (10)	7.56
C(37)	0.4005 (14)	0.8617 (15)	0.1723 (10)	9.94
C(38)	0.3021 (11)	0.8134 (13)	0.1895 (9)	7.51
C(39)	$0 \cdot 2258$ (12)	0.7104 (13)	0.3166 (11)	7.69
C(40)	1.0355 (8)	0.3133 (9)	0.4465 (8)	$3 \cdot 52$
C(41)	$1 \cdot 1079$ (8)	0.2682 (9)	0.5076 (8)	$3 \cdot 72$
C(42)	1.0828 (10)	0.1785 (10)	0.5525 (8)	4.77
C(43)	0.9908 (10)	0.1367 (11)	0.5359 (8)	$5 \cdot 22$
C(44)	0.9224 (10)	0.1849 (10)	0.4775 (8)	$4 \cdot 30$
C(45)	1.2152 (10)	0.3145 (10)	0.5150 (8)	$5 \cdot 17$
C(46)	1.2630 (10)	0.3430 (14)	0.4196 (9)	7.10
C(47)	1.3156 (16)	0.4463 (15)	0.4321 (13)	12.77
C(48)	1-3086 (11)	0.4589 (13)	0.5413 (13)	7.84
C(49)	$1 \cdot 2059$ (12)	0.4005 (10)	0.6655 (10)	6.48

\dagger In this space group atoms may be shifted freely along the b axis.
the 1 -methylimidazole complex and discusses the variations in bond distances and angles that have been observed. The amount of distortion from the symmetric t.b.p. (as in the triphenylphosphine oxide complex) varies, presumably dependent on the symmetry and packing requirements of the ligands, unequal bond energies (O vs the ligand bonding atom) and intermolecular effects.
In the nicotine complex there is little indication of displacement towards a rectangular pyramid. The average of the axial $\mathrm{O}-\mathrm{Cu}-\mathrm{N}$ angles is $175 \cdot 2(3)^{\circ}$; that of the equatorial $\mathrm{Cl}-\mathrm{Cu}-\mathrm{Cl}$ angles is

Table 2. Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{Cu}(1)-\mathrm{Cu}(2)$	$3.113(2)$
$\mathrm{Cu}(1)-\mathrm{Cu}(3)$	$3.112(2)$
$\mathrm{Cu}(1)-\mathrm{Cu}(4)$	$3.105(2)$
$\mathrm{Cu}(1)-\mathrm{Cl}(1)$	$2.421(3)$
$\mathrm{Cu}(1)-\mathrm{Cl}(2)$	$2.406(3)$
$\mathrm{Cu}(1)-\mathrm{Cl}(5)$	$2.369(4)$
$\mathrm{Cu}(1)-\mathrm{O}(1)$	$1.951(7)$
$\mathrm{Cu}(1)-\mathrm{N}(1)$	$1.933(9)$
$\mathrm{Cu}(2)-\mathrm{Cl}(2)$	$2.352(4)$
$\mathrm{Cu}(2)-\mathrm{Cl}(4)$	$2.377(4)$
$\mathrm{Cu}(2)-\mathrm{Cl}(6)$	$2.401(4)$
$\mathrm{Cu}(2)-\mathrm{O}(1)$	$1.886(7)$
$\mathrm{Cu}(2)-\mathrm{N}(2)$	$2.016(9)$
$\mathrm{N}(1)-\mathrm{C}(10)$	$1.346(15)$
$\mathrm{N}(1)-\mathrm{C}(14)$	$1.379(16)$
$\mathrm{C}(11)-\mathrm{C}(15)$	$1.514(18)$
$\mathrm{C}(15)-\mathrm{N}(5)$	$1.433(16)$
$\mathrm{N}(5)-\mathrm{C}(18)$	$1.494(20)$
$\mathrm{N}(5)-\mathrm{C}(19)$	$1.434(21)$
$\mathrm{N}(2)-\mathrm{C}(20)$	$1.320(14)$
$\mathrm{N}(2)-\mathrm{C}(24)$	$1.361(15)$
$\mathrm{C}(21-\mathrm{C}(25)$	$1.488(17)$
$\mathrm{C}(25)-\mathrm{N}(6)$	$1.439(21)$
$\mathrm{N}(6)-\mathrm{C}(28)$	$1.411(16)$
$\mathrm{N}(6)-\mathrm{C}(29)$	$1.470(24)$
$\mathrm{O}(1)-\mathrm{Cl}(1)$	$2.944(8)$
$\mathrm{O}(1)-\mathrm{Cl}(2)$	$2.919(7)$
$\mathrm{O}(1)-\mathrm{Cl}(3)$	$2.907(7)$

$\mathrm{Cu}(2)-\mathrm{Cu}(1)-\mathrm{Cu}(3)$	60.17 (4)	$\mathrm{Cu}(1)-\mathrm{Cu}(3)-\mathrm{Cu}(2)$	59.94 (4)
$\mathrm{Cu}(2)-\mathrm{Cu}(1)-\mathrm{Cu}(4)$	60.38 (4)	$\mathrm{Cu}(1)-\mathrm{Cu}(3)-\mathrm{Cu}(4)$	59.87 (4)
$\mathrm{Cu}(3)-\mathrm{Cu}(1)-\mathrm{Cu}(4)$	60.06 (4)	$\mathrm{Cu}(2)-\mathrm{Cu}(3)-\mathrm{Cu}(4)$	60.23 (4)
$\mathrm{Cu}(1)-\mathrm{Cu}(2)-\mathrm{Cu}(3)$	59.89 (4)	$\mathrm{Cu}(1)-\mathrm{Cu}(4)-\mathrm{Cu}(2)$	59.94 (4)
$\mathrm{Cu}(1)-\mathrm{Cu}(2)-\mathrm{Cu}(4)$	59.68 (4)	$\mathrm{Cu}(1)-\mathrm{Cu}(4)-\mathrm{Cu}(3)$	60.07 (4)
$\mathrm{Cu}(3)-\mathrm{Cu}(2)-\mathrm{Cu}(4)$	59.74 (4)	$\mathrm{Cu}(2)-\mathrm{Cu}(4)-\mathrm{Cu}(3)$	60.03 (4)
$\mathrm{Cu}(1)-\mathrm{O}(1)-\mathrm{Cu}(2)$	108.5 (3)	$\mathrm{Cu}(2)-\mathrm{O}(1)-\mathrm{Cu}(3)$	$112 \cdot 1$ (3)
$\mathrm{Cu}(1)-\mathrm{O}(1)-\mathrm{Cu}(3)$	108.8 (3)	$\mathrm{Cu}(2)-\mathrm{O}(1)-\mathrm{Cu}(4)$	$110 \cdot 5$ (3)
$\mathrm{Cu}(1)-\mathrm{O}(1)-\mathrm{Cu}(4)$	106.7 (3)	$\mathrm{Cu}(3)-\mathrm{O}(1)-\mathrm{Cu}(4)$	$110 \cdot 1$ (3)
$\mathrm{Cl}(1)-\mathrm{Cu}(1)-\mathrm{Cl}(2)$	122.0 (1)	$\mathrm{Cl}(1)-\mathrm{Cu}(3)-\mathrm{Cl}(3)$	$123 \cdot 3$ (1)
$\mathrm{Cl}(2)-\mathrm{Cu}(1)-\mathrm{Cl}(5)$	120.0 (1)	$\mathrm{Cl}(3)-\mathrm{Cu}(3)-\mathrm{Cl}(6)$	118.5 (1)
$\mathrm{Cl}(5)-\mathrm{Cu}(1)-\mathrm{Cl}(1)$.	114.8 (1)	$\mathrm{Cl}(6)-\mathrm{Cu}(3)-\mathrm{Cl}(1)$	116.1 (1)
$\mathrm{Cl}(2)-\mathrm{Cu}(2)-\mathrm{Cl}(4)$	115.6 (1)	$\mathrm{Cl}(3)-\mathrm{Cu}(4)-\mathrm{Cl}(4)$	115.4 (1)
$\mathrm{Cl}(4)-\mathrm{Cu}(2)-\mathrm{Cl}(6)$	122.4 (1)	$\mathrm{Cl}(4)-\mathrm{Cu}(4)-\mathrm{Cl}(5)$	123.0 (1)
$\mathrm{Cl}(6)-\mathrm{Cu}(2)-\mathrm{Cl}(2)$	120.2 (1)	$\mathrm{Cl}(5)-\mathrm{Cu}(4)-\mathrm{Cl}(3)$	118.3 (1)
$\mathrm{Cl}(1)-\mathrm{Cu}(1)-\mathrm{N}(1)$	98.6 (3)	$\mathrm{Cl}(1)-\mathrm{Cu}(3)-\mathrm{N}(3)$	95.5 (3)
$\mathrm{Cl}(2)-\mathrm{Cu}(1)-\mathrm{N}(1)$	92.2 (3)	$\mathrm{Cl}(3)-\mathrm{Cu}(3)-\mathrm{N}(3)$	97.3 (3)
$\mathrm{Cl}(5)-\mathrm{Cu}(1)-\mathrm{N}(1)$	97.6 (3)	$\mathrm{Cl}(6)-\mathrm{Cu}(3)-\mathrm{N}(3)$	91.4 (3)
$\mathrm{Cl}(1)-\mathrm{Cu}(1)-\mathrm{O}(1)$	83.9 (2)	$\mathrm{Cl}(1)-\mathrm{Cu}(3)-\mathrm{O}(1)$	86.6 (2)
$\mathrm{Cl}(2)-\mathrm{Cu}(1)-\mathrm{O}(1)$	83.4 (2)	$\mathrm{Cl}(3)-\mathrm{Cu}(3)-\mathrm{O}(1)$	85.6 (2)
$\mathrm{Cl}(5)-\mathrm{Cu}(1)-\mathrm{O}(1)$	84.6 (2)	$\mathrm{Cl}(6)-\mathrm{Cu}(3)-\mathrm{O}(1)$	83.2 (2)
$\mathrm{O}(1)-\mathrm{Cu}(1)-\mathrm{N}(1)$	175.6 (3)	$\mathrm{O}(1)-\mathrm{Cu}(3)-\mathrm{N}(3)$	174.6 (3)
$\mathrm{Cl}(2)-\mathrm{Cu}(2)-\mathrm{N}(2)$	97.9 (3)	$\mathrm{Cl}(3)-\mathrm{Cu}(4)-\mathrm{N}(4)$	93.7 (3)
$\mathrm{Cl}(4)-\mathrm{Cu}(2)-\mathrm{N}(2)$	93.9 (3)	$\mathrm{Cl}(4)-\mathrm{Cu}(4)-\mathrm{N}(4)$	95.0 (3)
$\mathrm{Cl}(6)-\mathrm{Cu}(2)-\mathrm{N}(2)$	92.0 (3)	$\mathrm{Cl}(5)-\mathrm{Cu}(4)-\mathrm{N}(4)$	99.0 (3)
$\mathrm{Cl}(2)-\mathrm{Cu}(2)-\mathrm{O}(1)$	86.3 (2)	$\mathrm{Cl}(3)-\mathrm{Cu}(4)-\mathrm{O}(1)$	83.0 (2)
$\mathrm{Cl}(4)-\mathrm{Cu}(2)-\mathrm{O}(1)$	$85 \cdot 1$ (2)	$\mathrm{Cl}(4)-\mathrm{Cu}(4)-\mathrm{O}(1)$	83.1 (2)
$\mathrm{Cl}(6)-\mathrm{Cu}(2)-\mathrm{O}(1)$	85.1 (2)	$\mathrm{Cl}(5)-\mathrm{Cu}(4)-\mathrm{O}(1)$	$86 \cdot 0$ (2)
$\mathrm{O}(1)-\mathrm{Cu}(2)-\mathrm{N}(2)$	175.7 (3)	$\mathrm{O}(1)-\mathrm{Cu}(4)-\mathrm{N}(4)$	174.9 (3)
$\mathrm{C}(10)-\mathrm{N}(1)-\mathrm{C}(14)$	117.4 (10)	$\mathrm{C}(30)-\mathrm{N}(3)-\mathrm{C}(34)$	117.3 (9)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(15)$	$120 \cdot 6$ (10)	$\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{C}(35)$	116.4 (10)
$\mathrm{C}(11)-\mathrm{C}(15)-\mathrm{N}(5)$	114.4 (10)	$\mathrm{C}(31)-\mathrm{C}(35)-\mathrm{N}(7)$	$110 \cdot 3$ (10)
$\mathrm{C}(15)-\mathrm{N}(5)-\mathrm{C}(18)$	109.9 (11)	$\mathrm{C}(35)-\mathrm{N}(7)-\mathrm{C}(38)$	$104 \cdot 2$ (10)
$\mathrm{C}(15)-\mathrm{N}(5)-\mathrm{C}(19)$	113.4 (12)	$\mathrm{C}(35)-\mathrm{N}(7)-\mathrm{C}(39)$	114.6 (10)
$\mathrm{C}(20)-\mathrm{N}(2)-\mathrm{C}(24)$	119.8 (10)	$\mathrm{C}(40)-\mathrm{N}(4)-\mathrm{C}(44)$	116.0 (9)
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(25)$	122.9 (12)	$\mathrm{C}(40)-\mathrm{C}(41)-\mathrm{C}(45)$	118.6 (10)
$\mathrm{C}(21)-\mathrm{C}(25)-\mathrm{N}(6)$	112.4 (12)	$\mathrm{C}(41)-\mathrm{C}(45)-\mathrm{N}(8)$	$109 \cdot 2$ (10)
$\mathrm{C}(25)-\mathrm{N}(6)-\mathrm{C}(28)$	104.4 (12)	$\mathrm{C}(45)-\mathrm{N}(8)-\mathrm{C}(48)$	$103 \cdot 1$ (10)
$\mathrm{C}(25)-\mathrm{N}(6)-\mathrm{C}(29)$	116.2 (12)	$\mathrm{C}(45)-\mathrm{N}(8)-\mathrm{C}(49)$	112.2 (10)

$\mathrm{Cu}(2)-\mathrm{Cu}(3)$	$3.120(2)$
$\mathrm{Cu}(2)-\mathrm{Cu}(4)$	$3.127(2)$
$\mathrm{Cu}(3)-\mathrm{Cu}(4)$	$3.111(2)$
$\mathrm{Cu}(3)-\mathrm{Cl}(1)$	$2.383(4)$
$\mathrm{Cu}(3)-\mathrm{Cl}(3)$	$2.368(3)$
$\mathrm{Cu}(3)-\mathrm{Cl}(6)$	$2.475(3)$
$\mathrm{Cu}(3)-\mathrm{O}(1)$	$1.876(7)$
$\mathrm{Cu}(3)-\mathrm{N}(3)$	$2.013(9)$
$\mathrm{Cu}(4)-\mathrm{Cl}(3)$	$2.430(3)$
$\mathrm{Cu}(4)-\mathrm{Cl}(4)$	$2.423(4)$
$\mathrm{Cu}(4)-\mathrm{Cl}(5)$	$2.343(4)$
$\mathrm{Cu}(4)-\mathrm{O}(1)$	$1.919(7)$
$\mathrm{Cu}(4)-\mathrm{N}(4)$	$1.946(9)$
$\mathrm{N}(3)-\mathrm{C}(30)$	$1.362(14)$
$\mathrm{N}(3)-\mathrm{C}(34)$	$1.364(13)$
$\mathrm{C}(31)-\mathrm{C}(35)$	$1.536(18)$
$\mathrm{C}(35)-\mathrm{N}(7)$	$1.449(16)$
$\mathrm{N}(7)-\mathrm{C}(38)$	$1.438(18)$
$\mathrm{N}(7)-\mathrm{C}(39)$	$1.499(18)$
$\mathrm{N}(4)-\mathrm{C}(40)$	$1.345(14)$
$\mathrm{N}(4)-\mathrm{C}(44)$	$1.359(15)$
$\mathrm{C}(41)-\mathrm{C}(45)$	$1.531(17)$
$\mathrm{C}(45)-\mathrm{N}(8)$	$1.439(16)$
$\mathrm{N}(8)-\mathrm{C}(48)$	$1.459(18)$
$\mathrm{N}(8)-\mathrm{C}(49)$	$1.457(17)$
$\mathrm{O}(1)-\mathrm{Cl}(4)$	$2.904(8)$
$\mathrm{O}(1)-\mathrm{Cl}(5)$	$2.923(8)$
$\mathrm{O}(1)-\mathrm{Cl}(6)$	$2.923(7)$

$119 \cdot 1(1)^{\circ}$. There is variation between the individual t.b.p.'s, with a parallelism in the distances associated with the pair $\mathrm{Cu}(1)-\mathrm{Cu}(4)$ and with the pair $\mathrm{Cu}(2)-\mathrm{C}(3)$, which accompany a reversal in orientation of the t.b.p.'s with respect to the b axis. Each Cu atom is within $\pm 0.25 \AA$ of the mean equatorial plane of the corresponding t.b.p., and the O atom is within $\pm 0.02 \AA$ of the three mean octahedral planes. The dihedral angles are within the ranges expected for a t.b.p. (Holmes, 1984; Haendler, 1989).

The estimated standard deviations of the ligand atoms are larger than for the atoms in the cluster; the atoms in the five-membered rings were the most difficult to locate. The four nicotine molecules exhi-

Fig. 1. Projection of an asymmetric unit of hexa- μ-chloro $-\mu_{4}$-oxotetrakis[(nicotine)copper(II)] as viewed along the b axis.

Fig. 2. Thermal-ellipsoid plots of hexa- μ-chloro- μ_{4}-oxo-tetrakis [(nicotine)copper(II)]. (a) The central $\mathrm{Cu}_{4} \mathrm{OCl}_{6} \mathrm{~N}_{4}$ cluster. (b) The nicotine ligand associated with $\mathrm{Cu}(1)$; plots of the other 3 ligands are similar.
bit the same configuration: that of the trans diastereomer.

The torsion angles for the sequences corresponding to $\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(15)-\mathrm{N}(5)$ are $20 \cdot 7,32 \cdot 9$, 61.8 and 70.4°, respectively, indicating the angular rotation between the six- and five-membered rings of the four ligands. The relationship between ligand configuration and formation of complexes of this type would be an interesting topic for study.

The author wishes to thank Dr Nina AlbaneseKotar, who prepared the complex and grew the crystals; Professor Alan H. Cowley, who arranged for the data collection; and Dr Graheme J. B. Williams and Dr Ashfaq Syed for reduction of the data. He wishes to acknowledge receipt of a grant from the University of New Hampshire Research Office that made possible the use of the University Computer Center.

References

Ahmed, F. R. (1973). NRC Crystallographic Programs. National Research Council of Canada, Ottawa, Canada.
Babak, S. F. \& Kagramanova, G. B. (1954). Zh. Obshch. Khim. 24, 1690-1693.

Bertrand, J. A. (1967). Inorg. Chem. 6, 495-498.
Bertrand, J. A. \& Kelley, J. A. (1966). J. Am. Chem. Soc. 88, 4746-4747.
Bertrand, J. A. \& Kelley, J. A. (1969). Inorg. Chem. 8, 19821985.

Beurskens, P. T., Bosman, W. P., Doesburg, H. M., Gould, R. O., Van Den Hark, Th. E. M., Prick, P. A. J., Noordik, K. H., Beurskens, G., Parthasarathi, V., Bruins Slor, H. J., Haltiwanger, R. C., Strumpel, M. \& Smits, J. M. M. (1985). DIRDIF. Tech. Report: 1984/1. Crystallography Laboratory, Toernooiveld, 6525 ED, Nijmegen, The Netherlands.
Gabe, E. J., Lee, F. L. \& Le Page, Y. (1985). The NRCVAX Crystal Structure System. In Crystallographic Computing 3: Data Collection, Structure Determination, Proteins, and Databases, edited by G. M. Sheldrick, C. Krüger \& R. Goddard, pp. 167-174. Oxford: Clarendon Press.
Gill, N. S. \& Sterns, M. (1970). Inorg. Chem. 9, 1619-1625.
Haendler, H. M. (1989). Acta Cryst. C45, 1691-1694.
Holmes, R. R. (1984). Prog. Inorg. Chem. 32, 119-235.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kilbourn, B. T. \& Dunitz, J. D. (1967). Inorg. Chim. Acta, 1, 209-216.
Norman, R. E., Rose, N. J. \& Stenkamp, R. E. (1989). Acta Cryst. C45, 1707-1713.
Prasad, S. \& Sharma, P. D. (1958). J. Proc. Inst. Chemists (India), 30, 254-258.

Acta Cryst. (1990). C46, 2057-2062

Mononuclear and Binuclear Products from Bis(acetylacetonato)zinc and 1,4-Diazabicyclo[2.2.2]octane (Dabco)

By Frank R. Fronczek, Michael L. Ivie and Andrew W. Maverick*
Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA

(Received 7 July 1989; accepted 13 February 1990)

Abstract

The structures of two products formed from $\mathrm{Zn}(\mathrm{acac})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ ($\mathrm{acacH}=2,4$-pentanedione) and Dabco (1,4-diazabicyclo[2.2.2]octane) are reported. In $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, Dabco is chloroalkylated: trans-bis(1-chloromethyl-4-aza-1-azoniabicyclo[2.2.2]octane- N^{4})-bis(2,4-pentanedionato)zinc dichloride, $[\mathrm{Zn}$ (Dabco$\left.\left.\mathrm{CH}_{2} \mathrm{Cl}\right)_{2}(\mathrm{acac})_{2}\right] \mathrm{Cl}_{2}$, (I), $\mathrm{C}_{24} \mathrm{H}_{42} \mathrm{Cl}_{4} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Zn}, \quad M_{r}=$ 657.82, monoclinic, $\quad C 2 / m, \quad a=20.724$ (3), $\quad b=$ 11.405 (2) $, \quad c=6.595(1) \AA, \quad \beta=104.78$ (1) ${ }^{\circ}, \quad V=$ $1507.3(9) \AA^{3}, \quad Z=2, \quad D_{x}=1 \cdot 449, \quad D_{m}=$ $1.44(2) \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{Mo} K \alpha)=0.71073 \AA, \quad \mu=$ $1.23 \mathrm{~mm}^{-1}, F(000)=688, T=293 \mathrm{~K}, R=0.039$ for 1619 data with $F_{o}^{2}>3 \sigma\left(F_{o}^{2}\right)(R=0 \cdot 100$ for 2722 data with $F_{o}^{2}>0$). The complex cation lies upon a $2 / m$ site and consists of two $\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{3} \mathrm{NCH}_{2} \mathrm{Cl}^{+}$

[^2](DabcoCH Cl^{+}) and two acac ${ }^{-}$ligands in a trans arrangement about Zn . The $\mathrm{Zn}-\mathrm{O}$ and $\mathrm{Zn}-\mathrm{N}$ distances are 2.042 (2) and 2.400 (2) \AA respectively. The cationic DabcoCH2Cl ${ }^{+}$ligands in (I) appear to be produced by nucleophilic attack of Dabco on $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The reaction in benzene is more straightforward: $\quad \mu$-(1,4-diazabicyclo[2.2.2]octane- N^{1}, N^{4})-bis[bis(2,4-pentanedionato)zinc] benzene solvate $\left[\left\{\mathrm{Zn}(\mathrm{acac})_{2}\right\}_{2}(\mu\right.$-Dabco) $] . \mathrm{C}_{6} \mathrm{H}_{6}$, (II), $\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Zn}_{2}$, $M_{r}=717 \cdot 50, \quad$ triclinic, $\quad P \overline{1}, \quad a=10 \cdot 409(2), \quad b=$ 11.327 (1), $\quad c=7.6915$ (6) $\AA, \quad \alpha=94.072$ (8),$\quad \beta=$ 99.830 (9),$\gamma=102 \cdot 83$ (1) ${ }^{\circ}, V=865 \cdot 6$ (4) $\AA^{3}, Z=1$, $D_{x}=1.376, \quad D_{m}=1.39(2) \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{Mo} \mathrm{K} \mathrm{\alpha})=$ $0.71073 \AA, \quad \mu=1.466 \mathrm{~mm}^{-1}, \quad F(000)=376, \quad T=$ $295 \mathrm{~K}, R=0.034$ for 3141 data with $F_{o}^{2}>3 \sigma\left(F_{o}^{2}\right)(R$ $=0.087$ for 5028 data with $F_{o}^{2}>0$). In the centrosymmetric $\left[\left\{\mathrm{Zn}(\mathrm{acac})_{2}\right\}_{2}(\mu\right.$-Dabco)] units in (II)

[^0]: * Nicotine is 3-(1-methyl-2-pyrrolidinyl)pyridine.

[^1]: * Lists of structure factors, anisotropic thermal parameters, H -atom parameters, ring-bond distances and angles not in Table 2, planes data, dihedral and torsion angles and a stereoview have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53025 (60 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

[^2]: * To whom correspondence should be addressed.

